
Chapter 1

Fourier Series

Basic definitions and examples of Fourier series are given in Section 1. In Section 2
we prove the fundamental Riemann-Lebesgue lemma and discuss Fourier series from the
mapping point of view. Pointwise and uniform convergence of the Fourier series of a
function to the function itself under various regularity assumptions are studied in Section
3. As an application, it is shown that every continuous function can be approximated by
polynomials in a uniform manner in Section 4. In the first appendex basic facts on series
of functions are summarised. In the second appendix the concept of measure zero sets is
discussed.

1.1 Definition and Examples

In Mathematical Analysis II power series have been studied. Now we come to Fourier
series.

First of all, a trigonometric series is a series of functions of the form

∞∑
n=0

(an cosnx+ bn sinnx), an, bn ∈ R.

As cos 0x = 1 and sin 0x = 0, we always set b0 = 0 and express the series as

a0 +
∞∑
n=1

(an cosnx+ bn sinnx).

It is called a cosine series if all bn’s vanish and sine series if all an’s vanish. Trigono-
metric series form an important class of series of functions. In Mathematical Analysis II,
we studied the convergence of the series of general functions. We recall
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2 CHAPTER 1. FOURIER SERIES

• Uniform convergence implies pointwise convergence of a series of functions,

• Absolute convergence implies pointwise convergence of a series of functions,

• Weierstrass M-Test for uniform and absolute convergence (see Appendix I).

• Uniform convergence preserves continuity.

For instance, using the fact | cosnx|, | sinnx| ≤ 1, Weierstrass M-Test tells us that a
trigonometric series is uniformly and absolutely convergent when its coefficients satisfy∑

n

|an|,
∑
n

|bn| <∞ ,

and this is the case when |an|, |bn| ≤ Cn−s,∀n ≥ 1, for some constant C and s > 1. Since
the partial sums are continuous functions and uniform convergence preserves continuity,
the infinite series

ϕ(x) ≡ a0 +
∞∑
n=1

(an cosnx+ bn sinnx)

is a continuous function on R. Actually, it is also periodic of period 2π. For, by pointwise
convergence, we have

ϕ(x+ 2π) = lim
n→∞

n∑
k=0

(
ak cos(kx+ 2kπ) + bk sin(kx+ 2kπ)

)
= lim

n→∞

n∑
k=0

(ak cos kx+ bk sin kx)

= ϕ(x),

hence it is 2π-periodic.

Recall that there is a special power series associated to a function which is smooth at
a certain point. Indeed, it is given by the Taylor’s series at this point. Let the point be
x0 and f is smooth in an open interval containing x0, this series is given by

∞∑
n=0

cn(x− x0)n , cn =
f (n)(x0)

n!
.

Similarly, there is a trigonometric series associated to an integrable function. It is called
the Fourier series of the function. Let us define it now.

Given a 2π-periodic function which is Riemann integrable function f on [−π, π], its
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Fourier series or Fourier expansion is the trigonometric series given by

an =
1

π

ˆ π

−π
f(y) cosny dy, n ≥ 1

bn =
1

π

ˆ π

−π
f(y) sinny dy, n ≥ 1 and

a0 =
1

2π

ˆ π

−π
f(y) dy.

(1.1)

Note that a0 is the average of the function over the interval. From this definition we gather
two basic information. First, the Fourier series of a function involves the integration of
the function over an interval, hence any modification of the values of the function over
a subinterval, not matter how small it is, may change the Fourier coefficients an and
bn. This is unlike a power series which only depends on the local properties (derivatives
of all order at a designated point). We may say a Fourier series depends on the global
information but a power series only depends on local information. Second, recalling
from the theory of Riemann integral, we know that two integrable functions which are
equal almost everywhere have the same integral. We will see that the converse is also
true, namely, two functions with the same Fourier series are equal almost everywhere.
Therefore, the Fourier series of two such functions are the same. In particular, the Fourier
series of a function is completely determined with its value on the open interval (−π, π),
regardless its values at the endpoints.

The motivation of the Fourier series comes from the belief that for a “nice function”
of period 2π, its Fourier series converges to the function itself. In other words, we have

f(x) = a0 +
∞∑
n=1

(an cosnx+ bn sinnx) , ∀x ∈ R , (1.2)

for some an’s and bn’s. At this point we do not know what these coefficients are. We
claim that whenever this holds, they must be given by (1.1). A formal argument proceeds
as follows. Multiply (1.2) by cosmx,m ≥ 1, and then integrate over [−π, π]. Using the
formulas ˆ π

−π
cosnx cosmxdx =

{
π, n = m
0, n 6= m

,

ˆ π

−π
cosnx sinmxdx = 0 , and

ˆ π

−π
cosnx dx =

{
2π, n = 0
0, n 6= 0

,

we arrive at the expression of an, n ≥ 0, in (1.2). Similarly, by multiplying (1.2) by sinmx
and then integrate over [−π, π], one obtain the expression of bn, in (1.2) after using

ˆ π

−π
sinnx sinmxdx =

{
π, n = m
0, n 6= m

.



4 CHAPTER 1. FOURIER SERIES

Of course, (1.2) arises from the hypothesis that every sufficiently nice function of period
2π is equal to its Fourier expansion. The study of under which “nice conditions” this
could happen is one of the main objects in the theory of Fourier series.

We can associate a Fourier series for any integrable function on [−π, π]. As the right
hand side of (1.2) consists of 2π-periodic functions, it is natural to extend its left hand side,
that is, the function f itself, as a 2π-periodic function. The extension is straightforward.
First of all, the real line can be expressed as the disjoint union of intervals ((2n−1)π, (2n+
1)π], n ∈ Z. Each number x belongs to one and exactly one such interval. Let f̃(x) =
f(x − 2nπ) where n is the unique integer satisfying (2n − 1)π < x ≤ (2n + 1)π. It
is clear that f̃ is equal to f on (−π, π]. As the original function is defined on [−π, π],
apparently an extension in strict sense is possible only if f(−π) = f(π). Since the function
value at one point does not change the Fourier series, from now on it will be understood
that the extension of a function to a 2π-periodic function refers to the extension for
the restriction of this function on (−π, π]. Note that for the 2π-periodic extension of a
continuous function on [−π, π] has a jump discontinuity at ±π when f(π) 6= f(−π). It is
is continuous on R if and only if f(−π) = f(π). In the following we will not distinguish
f with its extension f̃ .

We will use

f(x) ∼ a0 +
∞∑
n=1

(an cosnx+ bn sinnx)

to denote the fact that the right hand side of this expression is the Fourier series of f .
Note that in general ∼ cannot be replaced by =.

Example 1.1 We consider the function f1(x) = x. Its 2π-periodic extension is a function
smooth everywhere except jump discontinuities at (2n + 1)π, n ∈ Z. As f1 is odd and
cosnx is even,

πan =

ˆ π

−π
x cosnx dx = 0, n ≥ 0,

and

πbn =

ˆ π

−π
x sinnx dx

= −x cosnx

n

∣∣∣π
−π

+

ˆ π

−π

cosnx

n
dx

= (−1)n+12π

n
.

Therefore,

f1(x) ∼ 2
∞∑
n=1

(−1)n+1

n
sinnx.

Since f1 is an odd function, it is reasonable to see that no cosine functions are involved
in its Fourier series. How about the convergence of this Fourier series? Although the
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coefficients decay like O(1/n) as n→∞, its convergence is not clear at this moment. On
the other hand, this Fourier series is equal to 0 at x = ±π but f1(±π) = π. So, one thing
is sure, namely, the Fourier series is not always equal to its function. It is worthwhile to
observe that the bad points ±π are precisely the discontinuity points of f1.

Notation The big O and small ◦ notations are very convenient in analysis. We say a
sequence {xn} satisfies xn = O(ns) means that there exists a constant C independent of
n such that |xn| ≤ Cns. When s is positive, it means the growth of {xn} is not faster
than ns. When s is negative, the decay of {xn} is not slower than ns. On the other hand,
xn = ◦(ns) means |xn|/ns → 0 as n→∞.

Example 1.2 Next consider the function f2(x) = x2. Unlike the previous example,
its 2π-periodic extension is continuous on R. (However it is no longer differentiable at
(2n+ 1)π.) After performing integration by parts, the Fourier series of f2 is seen to be

f2(x) ≡ x2 ∼ π2

3
− 4

∞∑
n=1

(−1)n+1

n2
cosnx.

As f2 is an even function, this is a cosine series. The rate of decay of the Fourier co-
efficients is like O(1/n2). Using Weierstrass M-test, this series converges uniformly to a
continuous function. Later we will see that this continuous function is equal to f2, but at
this stage we do not know.

We list more examples of Fourier series of functions and leave them for you to verify.

(a) f3(x) ≡ |x| ∼ π

2
− 4

π

∞∑
n=1

1

(2n− 1)2
cos(2n− 1)x,

(b) f4(x) =

{
1, x ∈ [0, π]
−1, x ∈ (−π, 0)

∼ 4

π

∞∑
n=1

1

2n− 1
sin(2n− 1)x,

(c) f5(x) =

{
x(π − x), x ∈ [0, π]
x(π + x), x ∈ (−π, 0)

∼ 8

π

∞∑
n=1

1

(2n− 1)3
sin(2n− 1)x.

Let {cn}∞−∞ be a bisequence of complex numbers. (As contrast to a sequence of complex
numbers which is a map from N to C, a bisequence is a map from Z to C.) A (complex)
trigonometric series is the infinite series associated to the bisequence {cneinx}∞−∞ and is
denoted by

∑∞
−∞ cne

inx. To be in line with the real case, it is said to be convergent at x
if

lim
n→∞

n∑
k=−n

cne
inx
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exists. Now, a complex Fourier series can be associated to a complex-valued function.
Let f be a 2π-periodic complex-valued function which is integrable on [−π, π]. Its Fourier
series is given by the series

f(x) ∼
∞∑

n=−∞

cne
inx,

where the Fourier coefficients cn are defined to be

cn =
1

2π

ˆ π

−π
f(x)e−inxdx, n ∈ Z.

Here for a complex-valued function f , its integration over some [a, b] is defined to be

ˆ b

a

f(x)dx ≡
ˆ b

a

f1(x)dx+ i

ˆ b

a

f2(x)dx,

where f1 and f2 are respectively the real and imaginary parts of f . And differentiation is
understood as

f ′ ≡ f ′1 + if ′2.

It is called integrable/differentiable if both real and imaginary parts are integrable/differentiable.
The same as in the real case, formally the expression of cn is obtained as in the real case
by first multiplying the relation

f(x) =
∞∑

n=−∞

cne
inx

with eimx and then integrating over [−π, π] with the help from the relation

ˆ π

−π
eimxe−inx dx =

{
2π, n = m
0, n 6= m

.

When f is of real-valued, there are two Fourier series associated to f , that is, the
real and the complex ones. To relate them it is enough to observe the Euler’s formula
eiθ = cos θ + i sin θ, so for n ≥ 1

2πcn =

ˆ π

−π
f(x)e−inxdx

=

ˆ π

−π
f(x) (cosnx− i sinnx) dx

=

ˆ π

−π
f(x) cosnxdx− i

ˆ π

−π
f(x) sinnxdx

= π(an − ibn) .

we see that

cn =
1

2
(an − ibn), n ≥ 1, c0 = a0 .
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By a similar computation, we have

cn =
1

2
(a−n + ib−n), n ≤ −1 .

It follows that c−n = cn for all n. The complex form of Fourier series sometimes makes
expressions and computations more elegant. We will use it whenever it makes things
simpler.

We have been working on the Fourier series of 2π-periodic functions. For functions of
T -period, their Fourier series are not the same. They can be found by a scaling argument.
Let f be T -periodic. The function g(x) = f(Tx/2π) is a 2π-periodic function. Thus,

f

(
Tx

2π

)
= g(x) ∼ a0 +

∞∑
n=1

(an cosnx+ bn sinnx),

where a0, an, bn, n ≥ 1 are the Fourier coefficients of g. By a change of variables, we can
express everything inside the coefficients in terms of f , cos 2nπx/T and sin 2nπx/T . The
result is

f(x) ∼ a0 +
∞∑
n=1

(
an cos

2nπ

T
x+ bn sin

2nπ

T
x

)
,

where

an =
2

T

ˆ T/2

−T/2
f(y) cos

2nπ

T
y dy,

bn =
2

T

ˆ T/2

−T/2
f(y) sin

2nπ

T
y dy, n ≥ 1, and

a0 =
1

T

ˆ T/2

−T/2
f(y) dy.

Here the integrals could be replaced by any interval of length T . It reduces to (1.1) when
T is equal to 2π. From now on, when we talk about the Fourier series of a function on
an interval of length T , it is understood that the “building blocks” are cos 2nπ/Tx and
sin 2nπ/Tx, n ≥ 1 or e2nπix, n ∈ Z.

1.2 Riemann-Lebesgue Lemma

From the examples of Fourier series of functions in the previous section we see that the
coefficients decay to 0 eventually. We will show that this is generally true. This is the
content of the following result.
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Theorem 1.1 (Riemann-Lebesgue Lemma). For f ∈ R[a, b],

ˆ b

a

f(x) cosnx dx,

ˆ b

a

f(x) sinnx dx→ 0 , as n→∞ .

In particular, taking [a, b] = [−π, π], the Fourier coefficients of f , an, bn → 0 as n→∞.

To prepare for the proof, we examine how to approximate an integrable function by
step functions. Let a0 = a < a1 < · · · < aN = b be a partition of [a, b]. A step function
s satisfies s(x) = sj, ∀x ∈ (aj, aj+1], ∀j ≥ 0. The value of s at a is not important, but
for definiteness let’s set s(a) = s0. We can express a step function in a better form by
introducing the characteristic function χE of a set E ⊂ R:

χE(x) =

{
1, x ∈ E,
0, x /∈ E.

Then,

s(x) =
N−1∑
j=0

sjχIj , Ij = (aj, aj+1], j ≥ 1, I0 = [a0, a1].

Lemma 1.2. For every step function s, there exists some constant C independent of n
such that ∣∣∣∣ˆ b

a

s(x) cosnxdx

∣∣∣∣ , ∣∣∣∣ˆ b

a

s(x) sinnxdx

∣∣∣∣ ≤ C

n
, ∀n ≥ 1 .

Proof. Let s(x) =
∑N−1

j=0 sjχIj . We have

ˆ b

a

s(x) cosnxdx =

ˆ b

a

N−1∑
j=0

sjχIj cosnx dx

=
N−1∑
j=0

sj

ˆ aj+1

aj

cosnx dx

=
1

n

N−1∑
j=0

sj(sinnaj+1 − sinnaj).

It follows that ∣∣∣∣ˆ b

a

s(x) cosnxdx

∣∣∣∣ ≤ C

n
, ∀n ≥ 1, C = 2

N−1∑
j=0

|sj|.

Clearly a similar estimate holds for the other case.
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Lemma 1.3. Let f ∈ R[a, b]. Given ε > 0, there exists a step function s such that s ≤ f
on [a, b] and

0 ≤
ˆ b

a

(f − s) < ε.

Proof. As f is integrable, it can be approximated from below by its Darboux lower sums.
In other words, for ε > 0, we can find a partition a = a0 < a1 < · · · < aN = b such that

0 ≤
ˆ b

a

f −
N−1∑
j=0

mj(aj+1 − aj) < ε,

where mj = inf {f(x) : x ∈ [aj, aj+1]}. It follows that

0 ≤
ˆ b

a

(f − s) < ε

after setting

s(x) =
N−1∑
j=0

mjχIj , Ij = (aj, aj+1], j ≥ 1, I0 = [a0, a1].

Now we prove Theorem 1.1. For ε > 0, we can find s as constructed in Lemma 1.3 such
that 0 ≤ f − s and

0 ≤
ˆ b

a

(f − s) < ε

2
.

By Lemma 1.2, there exists some n0 such that∣∣∣∣ˆ b

a

s(x) cosnxdx

∣∣∣∣ < ε

2
,

for all n ≥ n0. Therefore,∣∣∣∣ˆ b

a

f(x) cosnxdx

∣∣∣∣ ≤ ∣∣∣∣ˆ b

a

(f − s) cosnx dx

∣∣∣∣+

∣∣∣∣ˆ b

a

s(x) cosnxdx

∣∣∣∣
≤
ˆ b

a

|f − s|+ ε

2

<
ε

2
+
ε

2
= ε .

The same argument applies when cosnx is replaced by sinnx. The proof of Riemann-
Lebesgue Lemma is completed.
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There are different and simpler proofs of this lemma when f is differentiable or con-
tinuous, see exercise.

It is useful to bring in a “mapping” point of view between functions and their Fourier
series. Let R2π be the collection of all 2π-periodic complex-valued functions (or real-
valued functions depending the context) integrable on [−π, π] and C consisting of all
complex-valued bisequences {cn} satisfying cn → 0 as n → ±∞. The Fourier series sets
up a mapping Φ from R2π to C by sending f to {f̂(n)} where, to make things clear,
we have let f̂(n) = cn, the n-th Fourier coefficient of f . When real-valued functions
are considered, restricting to the subspace of C given by those satisfying c−n = cn, Φ
maps all real-valued functions into this subspace. Alternatively, one may consider the
mapping from the space of integrable functions to the space consisting of two sequences
of real numbers {a0, a1, a2, · · · ; b1, b2, ·}. In the following discussion we shall focus on the
complex case, and let you fill in the real case.

With this correspondence at hand, our first question is: Is Φ one-to-one? Clearly the
answer is no, for two functions which differ on a set of measure zero have the same Fourier
coefficients. However, we will establish the following result:

Uniqueness Theorem. The Fourier series of two integrable functions in R2π coincide
if and only if they are equal almost everywhere. The Fourier series of two continuous
2π-periodic functions coincide if and only if they are identical.

Thus Φ is essentially one-to-one. We may also study how various properties in R2π and
C correspond under Φ. In fact, there are obvious and surprising ones. Some of them are
listed below and more can be found in the exercise. Observe that both R2π and C carry
the structure of a vector space over C.

Property 1. Φ is a linear map. Observe that both R2π and C form vector spaces over
R or C. The linearity of Φ is clear from its definition.

Property 2. When f ∈ R2π is k-th differentiable on R and all derivatives up to k-th

order belong to R2π, f̂
k(n) = (in)kf̂(n) for all n ∈ Z. See Proposition 1.4 below for a

proof. This property shows that differentiation turns into the multiplication of a factor
(in)k under Φ. This is amazing!

Property 3. Every translation in R induces a “translation operation” on functions
defined on R. More specifically, for a ∈ R, set fa(x) = f(x − a), x ∈ R. Clearly fa
belongs to R2π. We have f̂a(n) = e−inaf̂(n). This property follows directly from the
definition. It shows that a translation in R2π turns into the multiplication of a factor
e−ina under Φ, or, by a rotation of angle −na/2π.

Proposition 1.4. Let f be a continuous 2π-periodic function which is differentiable on
[−π, π] with f ′ ∈ R2π. Then

f̂ ′(n) = inf̂(n).
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When f is real-valued,

f ′(x) ∼
∞∑
n=1

(
nbn cosnx− nan sinnx

)
,

where

f(x) ∼ a0 +
∞∑
n=1

(
an cosnx+ bn sinnx

)
.

Proof. Let f ′ ∼
∑∞
−∞ c

′
ne
inx. We have

c′n ≡
ˆ
f ′(x)e−inxdx

=

ˆ
(f ′1(x) + if2(x))(cosnx− i sinnx)dx

=

ˆ
(f ′1(x) cosnx+ f ′2(x) sinnx)dx+ i

ˆ
(−f ′1(x) sinnx+ f ′2(x) cosnx)dx

= n

ˆ
(f1(x) sinnx− f2(x) cosnx)dx+ in

ˆ
(f1(x) cosnx+ f2(x) sinnx)dx

= n

ˆ
(f1(x) + if2(x)) sinnxdx+ in

ˆ
(f1(x) + if2(x)) cosnxdx

= ni

ˆ
(f1(x) + if2(x))(cosnx− i sinnx)dx

≡ nicn .

Here the integration is from −π to π. Alternatively, one may verify that the integration
by parts formula fg′ = f ′g + fg′ also holds for complex-valued f and g, thus

c′n ≡
ˆ π

−π
f ′(x)e−inx dx

= f(x)e−inx
∣∣π
−π −

ˆ π

−π
f(x)(−inx)e−inx dx

= incn .

In the real case, let the Fourier coefficients of f ′ be a′n and b′n’s.

πa′n =

ˆ π

−π
f ′(y) cosny dy

= f(y) cosny|π−π −
ˆ π

−π
f(y)(−n sinny) dy

= n

ˆ π

−π
f(y) sinny dy

= πnbn.
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Similarly,

πb′n =

ˆ π

−π
f ′(y) sinny dy

= f(y) sinny|π−π −
ˆ π

−π
f(y)n cosny dy

= −n
ˆ π

−π
f(y) cosny dy

= −πnan.

Property 2 links the regularity of the function to the rate of decay of its Fourier
coefficients. This is an extremely important property. When f is a 2π-periodic function
whose derivatives up to k-th order belong to R2π, applying Riemann-Lebesgue lemma to

f (k) we know that ˆf (k)(n) = ◦(1) as n→∞. By Property 2 it follows that f̂(n) = ◦(n−k),
that is, the Fourier coefficients of f decay faster that n−k. Since

∑∞
n=1 n

−2 < ∞, an
application of Weierstrass M-test establishes the following result: The Fourier series of f
converges uniformly provided f, f ′ and f ′′ belong to R2π. Therefore, the function

g(x) ≡ a0 +
∞∑
n=1

(an cosnx+ bn sinnx) ,

is a continuous 2π-periodic function. Using its uniform convergence, we see that the
Fourier coefficients of g are given by an and bn, the same as f . By the Uniqueness The-
orem,we conclude that g is equal to f almost everywhere. And since these two functions
are continuous, they must be equal everywhere (an easy exercise). We conclude that the
Fourier series of f is equal to f provided f, f ′, f ′′ ∈ R2π. A more general result will be
proved in the next section.

1.3 Convergence of Fourier Series

In this section we study the convergence of the Fourier series of a function to the function
itself. Recall that the series a0 +

∑∞
n=1(an cosnx+ bn sinnx), or

∑∞
n=−∞ cne

inx, where an,
bn, cn are the Fourier coefficients of a function f converges to f at x means that the n-th
partial sum

(Snf)(x) = a0 +
n∑
k=1

(ak cos kx+ bk sin kx) , S0f = a0 ,

or

(Snf)(x) =
n∑

k=−n

cke
ikx
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converges to f(x) as n→∞.

We start by expressing the partial sums in closed form. Indeed,

(Snf)(x) = a0 +
n∑
k=1

(ak cos kx+ bk sin kx)

=
1

2π

ˆ π

−π
f +

n∑
k=1

1

π

ˆ π

−π
f(y)(cos ky cos kx+ sin ky sin ky) dy

=
1

π

ˆ π

−π

(1

2
+

n∑
k=1

cos k(y − x)
)
f(y) dy

=
1

π

ˆ x+π

x−π

(1

2
+

n∑
k=1

cos kz
)
f(x+ z) dz

=
1

π

ˆ π

−π

(1

2
+

n∑
k=1

cos kz
)
f(x+ z) dz ,

where in the last step we have used the fact that the integrals over any two periods are
the same. Using the elementary formula

cos θ + cos 2θ + · · ·+ cosnθ =
sin
(
n+ 1

2

)
θ − sin 1

2
θ

2 sin θ
2

, θ 6= 0,

we obtain
1

2
+

n∑
k=1

cos kθ =
sin(n+ 1

2
)θ

2 sin θ
2

.

Noting that by the L’Hospital Rule,

lim
θ→0

sin(n+ 1
2
)θ

2 sin θ
2

=
2n+ 1

2
,

we introduce the Dirichlet kernel Dn by

Dn(x) =


sin
(
n+ 1

2

)
x

2π sin 1
2
x

, x 6= 0

2n+ 1

2π
, x = 0.

(In fact, there are infinitely many Dirichlet kernels indexed by n, but usually people refer
them as one.) It is a continuous, 2π-periodic function. We have successfully expressed
the partial sums of the Fourier series in the following closed form:

(Snf)(x) =

ˆ π

−π
Dn(z)f(x+ z) dz,
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Taking f ≡ 1, we have Snf = 1 for all n. Hence

1 =

ˆ π

−π
Dn(z) dz.

We have arrived at the fundamental relation

(Snf)(x)− f(x) =

ˆ π

−π
Dn(z)(f(x+ z)− f(x)) dz. (1.3)

In order to show Snf(x)→ f(x), it suffices to show the right hand side of (1.3) tends to
0 as n→∞.

The Dirichlet kernel plays a crucial role in the study of the convergence of Fourier
series. We list some of its properties as follows.

Property I. Dn(z) is an even, continuous, 2π-periodic function vanishing at z =
2kπ/(2n+ 1),−n ≤ k ≤ n, on [−π, π].

Property II. Dn attains its maximum value (2n+ 1)/2π at 0.

Property III. ˆ π

−π
Dn(z)dz = 1 .

Property IV. For every δ > 0,ˆ δ

0

|Dn(z)|dz →∞, as n→∞.

Only the last property needs a proof. Indeed, for each n we can fix an N such that
πN < (2n+ 1)δ/2 ≤ (N + 1)π, so N →∞ as n→∞. We compute

ˆ δ

0

|Dn(z)|dz =

ˆ δ

0

| sin(n+ 1
2
)z|

2π| sin z
2
|

dz

≥
ˆ (n+ 1

2
)δ

0

| sin t|
2πt/2

dt (use t/2 ≥ sin(t/2))

≥ 1

π

ˆ Nπ

0

| sin t|
t

dt

=
1

π

N∑
k=1

ˆ kπ

(k−1)π

| sin t|
t

dt

≥ 1

π

N∑
k=1

ˆ π

0

| sin s|
kπ

ds (use 1/t ≥ 1/(kπ)on [(k − 1)π, kπ])

=
2

π2

N∑
k=1

1

k
, as

ˆ π

0

| sin s| ds = 2,

→ ∞,
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as N →∞.

To elucidate the effect of the kernel, we fix a small δ > 0 and introduce the bump
function Φδ which satisfies (a) Φδ ∈ C(R), Φδ ≡ 0 outside (−δ, δ), (b) 0 < Φδ ≤ 1 on
(−δ, δ) and (c) Φδ = 1 on (−δ/2, δ/2). We split the integral into two parts:

ˆ π

−π
Φδ(z)Dn(z)(f(x+ z)− f(x)) dz,

and ˆ π

−π
(1− Φδ(z))Dn(z)(f(x+ z)− f(x)) dz .

The second integral can be written as

ˆ
E

(1− Φδ(z))(f(x+ z)− f(x))

2π sin z
2

(sin
z

2
cosnz + cos

z

2
sinnz) dz ,

where E is the union of two intervals [−π,−δ/2 and [δ/2, π]. As |sin z/2| has a positive
lower bound on E (in fact, | sin z/2| ≥ sin δ/2 > 0 for δ ∈ (0, π/2)), both the functions

1− Φδ(z)(f(x+ z)− f(x)) sin z/2

2π sin z
2

and
1− Φδ(z)(f(x+ z)− f(x)) cos z/2

2π sin z
2

and belong to R[E] and the second integral tends to 0 as n → ∞ in view of Riemann-
Lebesgue lemma. The trouble lies on the first integral. It can be estimated by

ˆ δ

−δ
|Dn(z)||f(x+ z)− f(x)|dz.

Unfortunately, in view of Property IV, no matter how small δ is, this term may go to ∞
so it is not clear how to estimate this integral.

The difficulty can be resolved by imposing a further regularity assumption on the
function. First a definition. A function f defined on [a, b] is called Lipschitz continuous
at x ∈ [a, b] if there exist L such that

|f(y)− f(x)| ≤ L |y − x| , ∀y ∈ [a, b]. (1.4)

Theorem 1.5. Let f be a 2π-periodic function integrable on [−π, π]. Suppose that f is
Lipschitz continuous at x. Then {Snf(x)} converges to f(x) as n→∞.
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Proof. Let Φδ be the bump function as before. We write

(Snf)(x)− f(x) =

ˆ π

−π
Dn(z)(f(x+ z)− f(x)) dz

=
1

2π

ˆ π

−π

sin(n+ 1
2
)z

sin z
2

(f(x+ z)− f(x)) dz

=
1

2π

ˆ π

−π
Φδ(z)

sin(n+ 1
2
)z

sin z
2

(f(x+ z)− f(x)) dz

+
1

π

ˆ π

−π
(1− Φδ(z))

sin(n+ 1
2
)z

sin z
2

(f(x+ z)− f(x)) dz

≡ I + II .

By our assumption on f ,
|f(x+ z)− f(x)| ≤ L |z| .

Using sin θ/θ → 1 as θ → 0, there exists δ such that 2| sin z/2| ≥ |z/2| for all z, |z| < δ.
For z, |z| < δ, we have |f(x+ z)− f(x)|/| sin z/2| ≤ 4L and

|I| ≤ 1

2π

ˆ δ

−δ
Φδ(z)

∣∣sin(n+ 1
2
)z
∣∣∣∣sin z

2

∣∣ |f(x+ z)− f(x)| dz

≤ 1

2π

ˆ δ

−δ
4Ldz

=
4δL

π
.

(1.5)

For ε > 0, we further restrict and fix a δ so that

4δL

π
<
ε

2
. (1.6)

After fixing δ, we turn to the second integral

II =
1

2π

ˆ π

−π

(1− Φδ(z))(f(x+ z)− f(x))

sin z
2

sin
(
n+

1

2

)
z dz

=
1

2π

ˆ π

−π

(1− Φδ(z))(f(x+ z)− f(x))

sin z
2

(
sin

z

2
cosnz + cos

z

2
sinnz

)
dz

≡
ˆ
E

F1(z, x) sinnz dz +

ˆ
E

F2(z, x) cosnz dz,

where E = [−π,−δ/2] ∪ [δ/2, π],

F1(z, x) =
1

2π

(1− Φδ(z))(f(x+ z)− f(x))

sin z
2

sin
z

2
,

and

F2(z, x) =
1

2π

(1− Φδ(z))(f(x+ z)− f(x))

sin z
2

cos
z

2
.
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As 1 − Φδ(z) = 0 on [−δ/2, δ/2], these two functions vanish outside the two intervals
[−π,−δ/2] and [δ/2, π]. Now | sin(z/2)| has a positive lower bound on E, so F1 and F2

are integrable on [−π, π]. By Riemann-Lebesgue Lemma, for ε > 0, there is some n0 such
that ∣∣∣∣ˆ π

−π
F1(z, x) cosnz dz

∣∣∣∣ , ∣∣∣∣ˆ π

−π
F2(z, x) sinnz dz

∣∣∣∣ < ε

4
, ∀n ≥ n0. (1.7)

Putting (1.5), (1.6) and (1.7) together,

|Snf(x)− f(x)| < ε

2
+
ε

4
+
ε

4
= ε, ∀n ≥ n0.

We have shown that Snf(x) tends to f(x) whenever f is Lipschitz continuous at x.

A careful examination of it reveals a convergence result for functions with jump dis-
continuity after using the evenness of the Dirichlet kernel.

Theorem 1.6. Let f be a 2π-periodic function integrable on [−π, π]. Suppose at some
x ∈ [−π, π], limy→x+ f(y) and limy→x− f(y) exist and there are δ > 0 and constant L such
that

|f(y)− f(x+)| ≤ L(y − x), ∀y, x < y < π,

and

|f(y)− f(x−)| ≤ L(x− y), ∀y, −π < y < x.

Then {Snf(x)} converges to (f(x+) + f(x−))/2 as n→∞.

Here f(x+) and f(x−) stand for limy→x+ f(y) and limy→x− f(y) respectively.

The proof of this theorem starts with the observation

ˆ π

0

Dn(z) dz =
1

2
,

ˆ 0

−π
Dn(z) dz =

1

2
,

which is due to the fact that Dn is an even function and

ˆ π

−π
Dn(z) dz = 1 .

We write

Sn(x)−1

2
(f(x+)+f(x−)) =

ˆ π

0

Dn(z)(f(x+z)−f(x+)) dz+

ˆ 0

−π
Dn(z)(f(x+z)−f(x−)) dz ,

and apply the arguments in the proof of Theorem 1.5 to these two integrals separately.
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A function f defined on [a, b] is called uniformly Lipschitz continuous if there
exists an L such that

|f(x)− f(y)| ≤ L|x− y| , ∀x, y ∈ [a, b] .

In other words, L is independent of x. Every uniformly Lipschitz continuous function is
Lipschitz continuous at every point. Every continuously differentiable function on [a, b]
is uniformly Lipschitz continuous. In fact, by the fundamental theorem of calculus, for
x, y ∈ [a, b],

|f(y)− f(x)| =
∣∣∣ ˆ y

x

f ′(t)dt
∣∣∣

≤ M |y − x|,

where M = sup{|f ′(t)| : t ∈ [a, b]}.

Now, we have a theorem on the uniform convergence of the Fourier series of a function
to the function itself.

Theorem 1.7. Let f be a 2π-periodic function satisfying the Lipschitz condition on R.
Its Fourier series converges to itself uniformly as n→∞.

In particular, it means that the Fourier series of a continuously differentiable 2π-
periodic function converges uniformly to itself.

Proof. Observe that when f is Lipschitz continuous on R, L is independent of x and
(1.5), (1.6) hold uniformly in x. Thus the theorem follows if n0 in (1.7) can be chosen
independent of x. This is the content of the lemma below. We apply it by taking F (s, t)
to be F1(z, x) or F2(z, x) with s, t replaced by z, x respectively.

Lemma 1.8. Let F (s, t) be continuous in [a, b]× [c, d]. Then

g(n, t) ≡
ˆ b

a

F (s, t)e−ins ds→ 0

uniformly on [c, d] as n→∞.

Proof. We need to show that for every ε > 0, there exists some n0 independent of t such
that

|g(n, t)| < ε, ∀n ≥ n0.

First of all, by a theorem in 2050, a continuous function on [a, b]× [c, d] is uniformly
continuous. For ε > 0, there is some δ such that |F (s, t) − F (s′, t′)| < ε whenever
|s− s′|, |t− t′| < δ. Now, given ε > 0, we divide [c, d] into M many subintervals [tj, tj+1]
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of length less that δ. For any t ∈ [c, d], there is some tj such that |t − tj| < δ, thus
|F (s, t) − F (s, tj)| < ε . Applying Riemann-Lebegue lemma to the function F (s, tj), we
find nj such that ∣∣∣∣ˆ b

a

F (s, tj)e
−ins ds

∣∣∣∣ < ε, ∀n ≥ nj .

Therefore, for t ∈ [c, d], and n ≥ n1, n2, · · · , nM ,∣∣∣∣ˆ b

a

F (s, t)e−ins ds

∣∣∣∣ ≤ ∣∣∣∣ˆ b

a

F (s, tj)e
−ins ds

∣∣∣∣+

∣∣∣∣ˆ b

a

(F (s, t)− F (s, tj)e
−ins ds

∣∣∣∣
< ε+ (b− a)ε = (1 + b− a)ε .

Example 1.3. We return to the functions discussed in Examples 1.1 and 1.2. Indeed,
f1(x) = x is smooth except at nπ. According to Theorem 1.5, the series

2
∞∑
n=1

(−1)n+1

n
sinnx

converges to x for every x ∈ (−π, π). Taking x = π/2, we get the formula

π

4
= 1− 1

3
+

1

5
− 1

7
+ · · · .

On the other hand, we observed before that the series tend to 0 at x = ±π. As f1(π+) =
−π and f(π−) = π, we have f1(π+) + f(π−) = 0, which is in consistency with Theorem
1.5. In the second example, f2(x) = x2 is continuous, 2π-periodic. By Theorem 1.7, its
Fourier series

π2

3
− 4

∞∑
n=1

(−1)n+1

n2
cosnx

converges to x2 uniformly on [−π, π]. Taking x = 0, we obtain the formula

π2

12
= 1− 1

4
+

1

9
− 1

16
+ · · · .

So far we have been working on the Fourier series of 2π-periodic functions. It is clear
that the same results apply to the Fourier series of 2T -periodic functions for arbitrary
positive T .

We have shown the convergence of the Fourier series under some additional regular-
ity assumptions on the function. But the basic question remains, that is, is the Fourier
series of a continuous, 2π-periodic function converges to itself? It turns out the answer
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is negative. A not-so-explicit example can be found in Stein-Shakarchi and an explicit
but complicated one was given by Fejér (see Zygmund “Trigonometric Series”). You may
google for more. In fact, using the uniform boundedness principle in functional analysis,
one can even show that “most” continuous functions have divergent Fourier series. The
situation is very much like in the case of the real number system where transcendental
numbers are uncountable while algebraic numbers are countable despite the fact that it
is difficult to establish a concrete number is transcendental.

Appendix I Series of Functions

This appendix serves to refresh your memory after the long hot summer.

A (real) sequence is a mapping ϕ from N to R. For ϕ(n) = an, we usually denote the
sequence by {an} rather than ϕ. This is a convention. We say the sequence is convergent
if there exists a real number a satisfying, for every ε > 0, there exists some n0 such that
|an − a| < ε for all n, n ≥ n0. When this happens, we write a = limn→∞ an.

An (infinite) series is always associated with a sequence. Given a sequence {xn},
set sn =

∑n
k=1 xk and form another sequence {sn}. This sequence is the infinite series

associated to {xn} and is usually denoted by
∑∞

k=1 xk. The sequence {sn} is also called
the sequence of n-th partial sums of the infinite series. By definition, the infinite series
is convergent if {sn} is convergent. When this happens, we denote the limit of {sn} by∑∞

k=1 xk, in other words, we have

lim
n→∞

n∑
k=1

xk =
∞∑
k=1

xk.

So the notation
∑∞

k=1 xk has two meanings, first, it is the notation for an infinite series
and, second, the limit of its partial sums (whenever it exists).

When the target R is replaced by C, we obtain a sequence or a series of complex
numbers, and the above definitions apply to them after replacing the absolute value by
the complex absolute value or modulus.

Let {fn} be a sequence of real- or complex-valued functions defined on some non-
empty E on R. It is called convergent pointwisely to some function f defined on the
same E if for every x ∈ E, {fn(x)} converges to f(x) as n → ∞. Keep in mind that
{fn(x)} is sequence of real or complex numbers, so its convergence has a valid meaning.
A more important concept is the uniform convergence. The sequence {fn} is uniformly
convergent to f if, for every ε > 0, there exists some n0 such that |fn(x)− f(x)| < ε for
all n ≥ n0. In notation fn ⇒ f . Equivalently, uniform convergence holds if, for every
ε > 0, there exists some n1 such that ‖fn − f‖∞ < ε for all n ≥ n1. Here ‖f‖∞ denotes
the sup-norm of f on E.
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An (infinite) series of functions is the infinite series given by
∑∞

k=1 fk(x) where fk are
defined on E. Its convergence and uniform convergence can be defined via its partial sums
sn(x) =

∑n
k=1 fk(x) as in the case of sequences of numbers.

Among several criteria for uniform convergence, the following test is the most useful
one.

Weierstrass M-Test. Let {fk} be a sequence of functions defined on some E ⊂ R.
Suppose that there exists a sequence of non-negative numbers, {ak}, such that

(a) |fk(x)| ≤ ak for all k ≥ 1, and

(b)
∑∞

k=1 ak is convergent.

Then
∑∞

k=1 fk converges uniformly and absolutely on E.

Also, the following “exchange theorem”.

Exchange Theorem. Let sn =
∑n

k=1 fk be uniformly convergent to
∑∞

k=1 fk on some
E ⊂ R. Then

(a)
∑∞

k=1 fk ∈ C(E) if fk ∈ C(E) for all k.

(b) If E is an interval and fk’s are differentiable with
∑n

k=1 f
′
k ⇒

∑∞
k=1 f

′
k, then

∑∞
k=1 fk

is also differentiable and ( ∞∑
k=1

fk

)′
=
∞∑
k=1

f ′k .

Appendix II Sets of Measure Zero

Let E be a subset of R. It is called of measure zero, or sometimes called a null set,
if for every ε > 0, there exists a (finite or infinite) sequence of intervals {Ik} satisfying
(1) E ⊂ ∪∞k=1Ik and (2)

∑∞
k=1 |Ik| < ε. (When the intervals are finite, the upper limit of

the summation should be changed accordingly.) Here Ik could be an open, closed or any
other interval and its length |Ik| is defined to the b− a where a ≤ b are the endpoints of
Ik.

The empty set is a set of measure zero from this definition. Every finite set is also null.
For, let E = {x1, · · · , xN} be the set. For ε > 0, the intervals Ik = (x1 − ε/(4N), xk +
ε/(4N)) clearly satisfy (1) and (2) in the definition.
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Next we claim that every countable set is also of measure zero. Let E = {x1, x2, · · · }
be a countable set. We choose

Ik =
(
xk −

ε

2k+2
, xk +

ε

2k+2

)
.

Clearly, E ⊂ ∪∞k=1Ik. On the other hand,

∞∑
k=1

|Ik| =
∞∑
k=1

ε

2k+1

=
ε

2
< ε .

We conclude that every countable set is a null set.

There are uncountable sets of measure zero. For instance, the Cantor set which plays
an important role in analysis, is of measure zero. Here we will not go into this.

The same trick in the above proof can be applied to the following situation.

Proposition A.1. The union of countably many null sets is a null set.

Proof. Let Ek, k ≥ 1, be sets of measure zero. For ε > 0, there are intervals satisfying
{Ikj }, Ek ⊂ ∪jIkj , and

∑
j |Ikj | < ε/2k. It follows that E ≡ ∪kEk ⊂ ∪j,kIkj = ∪k ∪j Ikj and∑

k

∑
j

|Ikj | <
∑
k

ε

2k
= ε.

The concept of a null set comes up naturally in the theory of Riemann integration. A
theorem of Lebsegue asserts that a bounded function is Riemann integrable if and only
if its discontinuity set is null. The following result is used in the uniqueness assertion on
Fourier series. I provide a proof here, but you may just take it for granted.

Proposition A.2. Let f be a non-negative integrable function on [a, b]. Then
´ b
a
f = 0

if and only if f is equal to 0 except on a null set. Consequently, two integrable functions
f, g satisfying ˆ b

a

|f − g| = 0,

if and only if f is equal to g except on a null set.

Proof. Let f be a non-negative integrable function satisfying
´ b
a
f = 0. We set, for each

k ≥ 1, Ak = {x ∈ [a, b] : f(x) > 1/k}. It is clear that

{x : f(x) > 0} =
∞⋃
k=1

Ak .
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By Proposition A.1., it suffices to show that each Ak is null. Thus let us consider Ak0 for
a fixed k0. Recall from the definition of Riemann integral, for every ε > 0, there exists a
partition a = x1 < x2 < · · · < xn = b such that

0 ≤
n−1∑
k=1

f(zk)|Ik| =

∣∣∣∣∣
n−1∑
k=1

f(zk)|Ik| −
ˆ b

a

f

∣∣∣∣∣ < ε

k0
,

where Ik = [xk, xk+1] and zk is an arbitrary tag in [xj, xj+1]. Let {k1, · · · , km} be the
index set for which Ikj contains a point zkj from Ak0 . Choosing the tag point to be zkj ,
we have f(zkj) > 1/k0. Therefore,

1

k0

∑
kj

|Ikj | =
∑
kj

f(zkj)|Ikj | ≤
n−1∑
k=1

f(zk)|Ik| <
ε

k0
,

so ∑
kj

|Ikj | < ε.

We have shown that Ak0 is of measure zero.

Conversely, let Ik, k = 1, · · · , n, be a partition of [a, b]. Since the non-zero set of f is
of measure zero, from each subinterval Ik one can pick a tag point zk such that f(zk) = 0.
As a result, the Riemann sum

∑n
k=1 f(zk)|Ik| = 0. As the Riemann sums approach the

Riemann integrable as the length of partitions tend to 0, we conclude that
´ b
a
f = 0.

A property holds almost everywhere if it holds except on a null set. For instance,
this proposition asserts that the integral of a non-negative function is equal to zero if and
only if it vanishes almost everywhere.

Comments on Chapter 1. According to the development of Undergraduate Analysis,
Fourier series should be the topic right after power series. However, it was not presented
in MATH2060 due to lack of time.

Historically, the relation (2.2) comes from a study on the one-dimensional wave equa-
tion

∂2u

∂t2
= c2

∂2u

∂x2

where u(x, t) denote the displacement of a string at the position-time (x, t). Around 1750,
D’Alembert and Euler found that a general solution of this equation is given by

f(x− ct) + g(x+ ct)
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where f and g are two arbitrary twice differentiable functions. However, D. Bernoulli
found that the solution could be represented by a trigonometric series. These two different
ways of representing the solutions led to a dispute among the mathematicians at that
time, and it was not settled until Fourier gave many convincing examples of representing
functions by trigonometric series in 1822. His motivation came from heat conduction.
After that, trigonometric series have been studied extensively and people call it Fourier
series in honor of the contribution of Fourier. Nowadays, the study of Fourier series has
matured into a branch of mathematics called harmonic analysis. It has equal importance
in theoretical and applied mathematics, as well as other branches of natural sciences and
engineering.

In some books the Fourier series of a function is written in the form

a0
2

+
∞∑
n=1

(an cosnx+ bn sinnx),

instead of

a0 +
∞∑
n=1

(an cosnx+ bn sinnx),

so that the formula for a0 is the same as the other an’s (see (2.1)). However, our notation
has the advantage that a0 has a simple meaning, i.e., it is the average of the function over
a period.

Concerning the convergence of a Fourier series to its function, we point out that an
example of a continuous function whose Fourier series diverges at some point can be
found in Stein-Sharachi. More examples are available by googling. The classical book
by A. Zygmund, “Trigonometric Series” (1959) reprinted in 1993, contains most results
before 1960. After 1960, one could not miss to mention Carleson’s sensational work in
1966, whose result implies that the Fourier series of every function in R2π converges to
the function itself almost everywhere.

The aim of this chapter is to give an introduction to Fourier series. It will serve the
purpose if your interest is aroused and now you consider to take our course on Fourier
analysis in the future.


